Snap Your Fingers ! Slap Your face ! & Wake Up !!!

FUN is the most Sacred Word in all the religious texts put together - in Life !


Snap Your Fingers ! Slap Your Face ! & Wake Up !!!

Labels

Powered By Blogger

Labels

.ATS GUIDELINES OF TB DEFAULT AND RELAPSE (1) 1.WHY FASCIAL PUFFINESS OCCURS FIRST IN RENAL EDEMA (1) Acute (2) ACUTE EXACERBATION OF COPD CRITERIA (2) ACUTE EXACERBATION OF ILD CRITERIA (1) ACUTE EXACERBATION OF IPF criteria (1) AE COPD (1) Air crescent sign and Monod sign (1) Alveolar arterial oxygen gradient (1) Aminophylline in asthma (1) Amphoric breathing (1) Anuria and oliguria definition (1) apical cap (1) Apical impulse (1) Assessment of respiratory muscle strength (1) Asthma PEF variablity (1) Att in hepatotoxicity (1) ATT weight band recent (1) Austin flint murmur and Graham steel murmur (1) BEQ (1) BMI (1) Borg dyspnoea score (1) breathlessness-sherwood jones (1) Bronchiectasis- Definition (1) BRONCHOPULMONARY SEGMENTS (1) Cardinal symptoms: aggravating and relieving facto (1) Causes of chest pain aggrevated by cough (1) Causes of localised bulging of chest wall (1) Causes of orthopnea (1) Causes of palpitation (1) Causes of Unilateral pedal edema (1) Cavity (1) check post (1) Chest physiotherapy (1) Chronic (2) Classification (1) Clubbing (1) clubbing -mechanism of (1) Clubbing Unilateral (1) CLUBBING-PATHOGENESIS PDGF (1) cobb's angle-In Kyphoscoliosis Cobb's angle above which can be operated (1) Cobbs angle (1) Complications of Tuberculosis (1) Cor pulmonale (1) Cough reflex (2) Cough- aggravating factors (1) Cultures- significant colony count (1) Cyst/Bulla/Bleb (1) Cystic Fibrosis- Female infertility (1) DD of Orthopnoea (1) definition (1) DNB question bank (1) Drugs causing breathlessness (1) dysphagia - approach (1) Dyspnea - Causes of acute dyspnea (1) ECG FEATURES OF DEXTROCARDIA (1) Emphysema (1) Emphysema and chronic bronchitis definition (1) Empyema necessitans (1) Exacerbation of ILD (1) Factitious asthma (1) Fever of unknown origin (1) fibrinolytics in plef (1) FORMOTEROL (1) Gastro Intestinal Tract and abdominal symptoms (1) Gram negative cocci & gram positive bacilli (1) HAM (1) Hemothorax (1) Honeycombing in HRCT (1) Hydropneumothorax- sound of Coin test (1) Hyperventilation syndrome (1) IDSA sinusitis management (1) ILD CLASSIFICATION (1) ILO classification for pneumoconiotic opacities (1) Impalpable apical impulse (2) Indications for steroids in Sarcoidosis (2) Krogg constant (1) Lung areas sensitive to pain (1) lung cancer- age group (1) Lung cancers-ALK inhibitors (1) MARKERS OF ILD (1) Massive hemoptysis (1) Massive hemoptysis criteria (1) Mines in Tamil Nadu (1) Muscles of respiration (2) Name reason for Potts spine (1) Nephrotic syndrome (1) NORMAL BREATH SOUNDS - mechanism (1) NORMAL THYMUS IN CT (1) NYHA (1) Orthopnea (1) Orthostatic hypotension (1) Pain- CRPS (1) Paracetamol -MOA (1) Pathophysiology of breath sounds (1) Penetration and exposure in Chest Xray (1) Perception of Dyspnoea (1) Pleuroscopy guidelines (1) PND causes (1) Pneumatocele (1) pneumonia phases of (1) Positional variation in chest pain (1) Puddle sign (1) Pulmonary embolism (1) Pulsations in different areas- causes (1) Pulsus paradoxus (1) Pulsus paradoxus - Measuremen (2) RADS-Definition and Criteria (1) Respiratory system clinical examination (1) S3 (1) S4 HEART SOUNDS (1) Serum cortisol (1) Sherwood jones classification (1) Shivering (1) Silhouette sign (1) Six minute walk test (1) Skodaic resonance (1) Sleep study and polysomnography (1) Spinoscapular distance (1) Split pleura sign (1) Subacute (2) Subpulmonic effusion (1) Swellin (1) Terminal respiratory unit (1) Test (1) Tidal percussion (1) Tongue in HIV (1) Upper respiratory tract (1) Velcro crackles (1) Vesicular breath sounds - Physiology (1) weight loss (1)

Search This Blog

Pages

Wednesday, August 23, 2023

Anion gap

 Anion gap =( Na+) + (K+)  -  (Hco3 -) + (Cl-)

Normal range-8 to 12 mmol/L


Ref-MD Vasudevan textbook of biochemistry 6th edition 

Vesicular breath sounds - Physiology

Normal breath sounds originate from the larynx. When the sound leaves the larynx it travels down the trachea and then divides when the airway divides. Some sound must be transmitted through the lung parenchyma but most travels down the airway. Eventually the sound travels along airways of different lengths and therefore becomes out of phase. Next it arrives in the respiratory bronchioles and alveoli and then gets transmitted through the chest wall to your stethoscope. The fat layer filters out much of the high frequency sound (above 4 kHz). The resulting sounds are much softer (because the sound has effectively been diluted throughout the whole of the lungs). There is no gap between inspiration and expiration (because all of the sound has become out of phase and therefore ‘filled in’ the gap). Finally, the first third of expiration is now the only part that is audible because the latter two-thirds are much quieter.

REFERENCE: Chamberlain’s, 13th edition, page no: 97